こんにちはゲストさん。会員登録(無料)して質問・回答してみよう!

解決済みの質問

ベクトルの垂心の証明

三角形ABCの外心をO,OHベクトル=OAベクトル+OBベクトル+OCベクトルとするとき、点Hは三角形ABCの垂心であることを示せ。

解答ではAHベクトル・BCベクトル=0
    BHベクトル・CAベクトル=0
    CHベクトル・ABベクトル=0の3つを言うことで証明していますが、このうちの2つだけを示す事でも垂心があることが言えると思うのですが3つとも言わないといけないのですか?教えてください。

投稿日時 - 2007-01-26 17:52:17

QNo.2698173

すぐに回答ほしいです

質問者が選んだベストアンサー

>>An.2様:有名な事実です。
OH=OA+OB+OC
より、
AH=OB+OC
だから、
AH・BC=(OB+OC)・(OC-OB)=|OC|^2-|OB|^2=0
です。なぜならOは外接円の中心だから。

さて質問者様、この回答をよく読むと、AをBに、BをCに、CをAに変えることによってまったく同じ計算をして
BH・CA=0
を証明できます。さらにAをBに、BをCに、CをAに変えて
CH・AB=0
です。したがって実質ひとつさえ証明できれば、あとは“同様に”と書いて論証を省略することが可能です。

ではやや略証で済ましてよいとしても、それでも3つ示さないといけないかというと、これはAn.1様もご指摘されているとおり、垂心の定義の問題なのです。垂心が三角形の各頂点から下ろした3垂線の交点である、ということならば、やはり3つとも示さないと垂心であることにはなりません。

ところが、実は垂心というのは、適当にとった2垂線の交点でもあるので、こちらが定義だとすると、2つの証明で十分なんです。というわけで結論ですが、2つの証明で実は足りているのだけれど、3つ書いておく方が無難だ、ということです。3つ書いて×になることはないが、2つだと意地の悪い先生なら、やや証明不十分といって減点する可能性があります。

投稿日時 - 2007-01-26 23:24:52

お礼

3つとも証明すればいいのですね。詳しく説明頂きありがとうございました。

投稿日時 - 2007-01-27 07:38:36

ANo.3

このQ&Aは役に立ちましたか?

0人が「このQ&Aが役に立った」と投票しています

回答(3)

ANo.2

その前に
>三角形ABCの外心をO,OHベクトル=OAベクトル+OBベクトル+OCベクトルとするとき、点Hは三角形ABCの垂心である
↑これ本当ですか?

投稿日時 - 2007-01-26 19:12:05

ANo.1

 「3つの垂線が1点で交わる」ことが与えられていれば、質問者さんが言われるように2つだけを示せば良いと思います。
 ただ、与えられていなければ、証明の深さにもよりますが、問題によっては「3つの垂線が1点で交わる」ことの証明も含まれているような場合もありますので、その場合には3つとも直交することを示すのが妥当だと思われます。

投稿日時 - 2007-01-26 18:16:11

お礼

解答ありがとうございました。とっても助かりました。

投稿日時 - 2007-01-27 07:46:21

あなたにオススメの質問