こんにちはゲストさん。会員登録(無料)して質問・回答してみよう!

解決済みの質問

オイラーの公式の用い方

オイラーの公式とド・モアブルの定理を利用して3倍角の公式を証明せよ。という問題のなのですが、私にはオイラーの公式の出番がないように思えます。。。
ド・モアブルの定理
(cosθ+i×sinθ)^n=cosnθ+i×sinnθ
でn=3にして実部と虚部を比較するのではだめなのでしょうか??

一応。。。
オイラーの公式
e^iθ=cosθ+i×sinθ

投稿日時 - 2007-04-22 11:27:07

QNo.2940672

すぐに回答ほしいです

質問者が選んだベストアンサー

度もあぶるの定理はこの世に存在しなかったとして忘れてしまって結構
オイラーの式によって無用の長物になった
オイラーの定理のみを使って3倍角の公式の導出を補足に書け

投稿日時 - 2007-04-22 11:59:04

ANo.1

このQ&Aは役に立ちましたか?

1人が「このQ&Aが役に立った」と投票しています

回答(2)

ANo.2

(オイラーの公式)
e^(iθ)=cosθ+i×sinθ
{e^(iθ)}^3=(cosθ+i×sinθ)^3
(オイラーの公式)
e^(i3θ)=cos(3θ)+i×sin(3θ)
から
{e^(iθ)}^3=e^(i3θ)だから
cos(3θ)+i×sin(3θ)=(cosθ+i×sinθ)^3
(n=3にけるド・モアブルの定理)

右辺の三乗を展開して、左辺と右辺の実数部同士、虚数部同士を
等しいとおけば3倍角の公式が出てきます。

以上から#1様の言われるようにド・モアブルの定理は出番がなくなってきています。なくてもオイラーの公式だけで間に合いますね。

投稿日時 - 2007-04-22 13:19:10

あなたにオススメの質問