こんにちはゲストさん。会員登録(無料)して質問・回答してみよう!

締切り済みの質問

潮汐力による変形をルジャンドル関数で表すには

こんにちは、
下記の式ηは、地球と月の重力による球形の海面からずれる高さを
求める式です。

η=3/2*M/E*(e/R)^3*e*(cos^2λ-1/3)

E:地球の質量
M:月の質量
e:地球の半径
R:地球-月の距離
λ:地球の中心から月と地球表面のある点―高さηを求める点―を見る角度
を示しております。

具体的に計算してみますと
e/R=1/60.3
M/E=1/81.3
地球の半径をe=6370kmとしますと、
λ=0、180度のとき
0.357353m
で一番膨らみ、
λ=90、270度のとき
-0.178676m
で一番へこみます。
これは、現実的な満潮、干潮時の数値とほぼ一致するようです。

ここで、質問ですが、
球体の中心から表面までの距離Rは、対称軸から測った角度θの関数と
して、ルジャンドルの多項式Pλ(θ)によって展開でき、更に、中心
に関して変形が反転対称であるとすれば
R(θ)=R0(1+α0+α2P2(θ)+α4P4(θ)+α6P6(θ)+、、、)
と表せますが、上記の潮汐力による地球(球体)の変形もルジャンドル関数で
表せるのでしょうか?

投稿日時 - 2007-05-02 23:30:11

QNo.2968817

困ってます

このQ&Aは役に立ちましたか?

0人が「このQ&Aが役に立った」と投票しています

回答(2)

ANo.2

>現実的な満潮、干潮時の数値
http://www.data.kishou.go.jp/kaiyou/db/tide/suisan/suisan.php

投稿日時 - 2007-05-03 02:00:06

お礼

お返事ありがとうございます。
了解しました。

投稿日時 - 2007-05-09 23:14:37

あなたにオススメの質問